
Conditional statements, Loops and Function creation

In this lesson, you will learn how to save and load the workspace from and into
R. Furthermore, you will learn the conceptual as well as the syntax of
"conditional statement", "loop" and "writing own functions".

Last modified by Edmondo Di Giuseppe on Tuesday, 24 October 2017, 6:12 PM
This document was downloaded on Wednesday, 25 October 2017, 11:40 AM

Lesson Plan

Saving and loading objects in R files

Save the workspace
Save one or more objects
Load .RData files

Conditional statement

Conceptual principles
Syntax principles

Loop

Conceptual principles
Syntax principles

Write functions

Why and How to

Saving and loading objects in R files

Save workspace image

You can save the workspace, i.e. the whole objects created during your working session in a R
file (.RData):

1) using the Graphical user interface (GUI)

2) from command line, let's say "Workspace" the name of this file

save.image("~/Desktop/R-course/Workspace.RData")

In both cases, a new file is created in the working directory (you may want to find out which is it
by typing getwd()):

It might be useful to have objects ready to work on, especially if you are in the middle of a
debugging phase but

BE CAREFUL WHEN USING BIG DATASET SINCE THE “.RDATA” FILE MAY BECOME
MEMORY SPACE CONSUMING

Notice that you are requested to save workspace or not whenever you close R software.

Save one or more objects

You might want to overcome the memory issue by saving a single object (recall the objects of
Module 2):

save(dataRR,file="dataRR.RData")

or a list of selected objects

save(list=c("dataRR","mon.cum"),file="TwoObjects.RData")

Load workspace or objects

Now, close and re-launch R. Load the workspace from the GUI pointing at the Workspace.RData
file in the R-course folder:

Question-List of loaded objects

Which command do we use to list the objects loaded in the R engine?

str()

ls()

summary()

Conditional statements/1

to DO: create a new script file in the R-course project and name it "mod3-if-for-ownfunction.R"

Conceptual framework and Syntax

An important subject of programming is being able to determine if a condition is true or false and
then perform specific actions depending on the outcome of the condition test.

For instance, let us set the variable x to 1:

 x = 1 # the symbols "=" and "<-" are interchangeable

This variable is an object of type "vector":

class(x)
[1] "numeric"

Then, we can test a general condition on the value of the object x and define a consequent
action to do.

For example, let us ask the system if the value of x is greater than 0and, if the response is
positive, to print the value of object x. The translation of the previous sentence from lexical to R
language is:

if(x > 0) x

We can also use the function print() for more complex printing options, such as the implementation
of paste() function, that is used to combine numeric and string elements:

if(x > 0) print(paste("x =",x))

We can make also an explicit request of equality using the symbol "==":

if(x == 1) x:(x+10) # the ":" symbol is used to build a sequence

if(x == 1) (x+3)/2 # the "/
" symbol is used for mathematical division

The latter sequence of commands can be also written in a more compact way using the symbol ";",
as follows:

if(x == 1) x:(x+10); if(x == 1) (x+3)/2

Question-Conditional statement

Select the correct answer in each box.

Correct answer.

Incorrect answer.

if(x == 1) x:(x+10)

if(x == 1) (x+10):x

if(x = 1) x+10

if(x == 1) x<-x+10; if(x <= 10) "yes" else "no"

Conditional statement/2

The subsequent actions of a conditional test can be divided into:

action1 to do if test response is TRUE;
action2 to do if test response is FALSE.

The command to divide the two types of action is

 if(response is TRUE)

 action1

 else

 action2

A very compact way to code such a conditional test is

if(x > 2) "yes" else "no" # or alternatively
if(x > 2) print("yes") else print("no")

When actions are more elaborated, the use of curly brackets is needed to separate actions1 from
actions2. The following example shows how to use them:

x <- c(4,10, NA, NA)
 # x is a vector with missing data in position 3 and 4

recall the usage of the function is.na(). This function returns a logical vector that contains TRUE in
the place of the vector where NA is located:

is.na(x)
> FALSE FALSE TRUE TRUE

and the function which()returns their position:

which(is.na(x))
[1] 3 4

Now, the conditional test is:

1. is there any missing data in x?
2. if yes then substitute missing with the minimum of non-missing data;
3. if not then let the x vector unchanged

and the correspondent code is:

if(length(x[is.na(x)]) > 0){ #we use length() to count missing data
 position.NA<-which(is.na(x))
 x[position.NA] <- min(x, na.rm=TRUE)
 }else{
 x <- x
 }

Loops

Conceptual framework and Syntax

Whenever we need to repeat the same action for some objects (vectors, matrixes, arrays, data
frames, lists etc) or part of them (elements of a vector, columns/rows of a matrix, array, data
frame), we use a framework of repeating code that is called "Loop”.

There are three different looping frameworks in R:

1. for
2. repeat
3. while

To stop iterating through a loop we use the break statement.

To skip to the next iteration without evaluating the remaining expressionsin the loop body, we use
the command next.

For

The for loop iterates through each element in, say, a vector and the index (counter) “i” is
incremented of 1 at each iteration. Its syntax in R is:

for(i in sequence of elements)

{

 action

 i=i+1

 }

We do not need to write explicitly i=i+1 in the coding since it is implicit in the for call.

As an example, the following R code prints out multiples of 2 up to 10:

for(i in 1:5) {i <- i*2; print(i)}
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

Repeat

The repeat loop just repeats the same action under a condition:

repeat action break action

Let’s rewrite the example above using a repeat loop:

i <- 1
repeat {if(i <= 5) {i <- i*2; print(i)} else break}
[1] 2
[1] 4
[1] 8

Notice that if you don to include a break command in repeat construct, the R code will be an
infinite loop.

While

Again, let’s rewrite the example above using a while loop:

i <- 1
while(i <= 5){i <- i*2; print(i)}
[1] 2
[1] 4
[1] 8

Loops: for

Something more on “for” loop

We use now “i” as a pointer to the values of an object, i.e. x[i] is the i-th elements of x.

Then, since “i” increments of 1 at each iteration, we access iteratively the 1st element x[1], 2nd
element x[2],….., n-element x[n].

Example1

x<-c(2,5,9,12,15)
y<-c() #set an empty vector "y"
for (i in 1:length(x)) {
 x2 <- (x[i]+1)^2
 y <- c(y,x2) #populate the i-th element of y at each iteration
}
xy <- cbind(x,y) #cbind() builds a two column data frame

Example1bis

x<-c(2,5,9,12,15)
y<-numeric(length = length(x))
#set a vector "y" of 5 elements (as long as "x"), each of value equals to
 0
for (i in 1:length(x)) {
 y[i] <- (x[i]+1)^2
}
xy <- cbind(x,y)

TIP: you should know that the good programmer avoids as much as possible the use of loops.
Then, the compact solution for Example1 and Example1bis is simply:

x<-c(2,5,9,12,15)
xy<-cbind(x,(x+1)^2)

Question-Loop

Let us write some code to transform values of a vector from "centimeters" to "inch".

x_cm <- seq(10,100,by=20) # height in cm

Which of the following code line is correct?

for(i in x_cm){x_in = i/2.54; print(paste(i,"cm is equivalent to",round(x
_in,1),"inches"))

for(i in x_cm){x_in = i/2.54; print(paste(i,round(x_in,1)))}

for(i in x_cm){x_in= x/2.54}
x_in

Write your own functions

Every statement in R—setting variables, doing arithmetic, repeating code in a loop—can be
written as a function.

A very simple function

Write the following code in console and press return:

From_cm_to_inches = function(x){x/2.54} #x=height_in_centimeters

(The name given to the function is up to you).

Nothing happens apparently, nevertheless you have included the function
From_cm_to_inches() in the R environment and you can use it exactly as you do with other
functions. The function works assigning whatever value to the x variable and pressing return…….

From_cm_to_inches(x=2)

or even a vector

> From_cm_to_inches(x=c(2,5,7))
[1] 0.7874016 1.9685039 2.7559055

ESSAY: write the function that transforms inches to centimeters and pastes the code below.

Re-writing a loop construct in a function form

Now, recall the Example1bis done in the loop card:

Example1bis

x<-c(2,5,9,12,15)
y<-numeric(length = length(x))
for (i in 1:length(x)) {
 y[i] <- (x[i]+1)^2
}
xy <- cbind(x,y)

 and let us re-write it in a functional form as follows:

Simple_math<-function(x){
 y <- (x+1)^2
 xy <- cbind(x,y)
 return(xy)
 }

Again, execute function code to load it into the R Environment and assign values to x to use it. For
instance,

MyVector<-c(2:6,NA,6:2)
Simple_math(MyVector)

Notice that the return command is used inside functions in order to define which object has to
be the output.

ESSAY: write a new function starting from Simple_math(), where the third column with
exp((x[i]+1)^2) is added to the output and paste the code below.

Final exercise Module 3

Make the following exercise and paste below the correspondent code.

Block A: using loop

1. assign to x the output of rnorm() function that generates random number from a Gaussian
distribution (for example, set mean=10 and variance=2);

2. find outliers, let us say when value is greater than “mean + 1.96*standard deviation”;
3. print a data frame that contains two columns: one with the original vector and the other with

the string “outlier” when needed.

Block B: writing function

1. repeat the same exercise using function construct instead of loop

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

