
Data import and Time Series analysis

In this module, you will learn how to import ASCII and Excel files into R and the
rudimentary tools of time series analysis.

Last modified by Edmondo Di Giuseppe on Tuesday, 24 October 2017, 1:11 PM
This document was downloaded on Wednesday, 25 October 2017, 11:45 AM

Lesson Plan

Data import

ASCII files (.txt, .csv)
Excel files (.xls, .xlsx)

Exploratory Data Analysis

Data manipulation of R objects: vector, data frame, matrix, ...

Sub-set of datasets
Use of basic Rfunctions

Data aggregation at different time scales

Time Series

Construction time-series objects
Plot of Time Series

Decomposition Time Series

Other Environments for R

The standard R
GUI (Graphical User Interface) editor only implements very rudimentary functionality, that's why
there are several active projects of R integrated editors.

A non exhaustive list of these editors is:

Windows

1. Tinn-R Editor - GUI for R Language and Environment

2. R Productivity
Environment (part of REvolution
R Enterprise)

3. RStudio
4. Vim
5. Emacs + ESS (Emacs Speaks Statistics)

Linux

1. RStudio
2. RGedit
3. Rkward

We will use the R editor for these lessons. However, if you look for an integrated
environment, I suggest RStudio because the installation process is very easy and it also
provides integration with many tools, such as Latex or Svn.

Create a new folder for the R course

Firstly, we create a directory R-course where we will save data to be imported and output.

Secondly, we enter the R-course and create 3 further directories: Data, Output, and Plots.

Thirdly, we launch R Console and find out the default working directory, i.e. where the R
engine expects to find files you want to import.

Set the working directory

In this step, we link the R engine to the R-course directory.

Check if the working directory is the R-course folder.

In the next content page, we will save a file into the working directory that contains an empirical
time series data.

Create a script file

From R Console, we create a file named “mod2-data-import-ts.R” (we are going to fill up
this file with a sequence of R commands) doing as follows:

Writing code on a script file

It is strictly recommended to write down commands on a script fileand run each line or
the entire code from it.

If you close the session, you will be able to open your script file and keep working on it:

Data Import/1

How to import data from a .txt file

Have a look at the data files: they contain metadata and general information about precipitation
time series of Roma Ciampino weather station, extracted from EUROPEAN CLIMATE
ASSESSMENT & DATASET (ECA&D)

RR_STAID000176.txt

elements.txt

metadata.txt

sources.txt

stations.txt

Download and save the “RR_STAID000176.txt” file into "R-course/Data" (the directory
already created on your PC).

http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/RR_STAID000176.txt
http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/elements.txt
http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/metadata.txt
http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/sources.txt
http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/stations.txt
http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2238/RRtimeSeries.zip

Data Import/2

Now, we import data from “RR_STAID000176.txt” file into R.

We need to read the whole file but the first 19 rows in order to correctly import data.

Notice that the precipitation amount in the column RR is expressed in 0.1 mm.

Data Import/3

Finally, copy and paste the following lines into the mod2-data-import-ts.R file:

dataRR<-read.table(file="Data/RR_STAID000176.txt", skip=19, header=TRUE,
sep=",", na.strings=-9999)

dataRR$RR<-dataRR$RR*0.1

Function arguments

Here, we need to define some arguments in order to correctly read data:

file: the path to the file (TIP: you might avoid specifying the working directory part of the
path);
skip: the 19 lines to be skipped from the reading of the file;
header: a logical value indicating whether the file contains the names of the variables as its
first line;
sep: the field separator character;
na.strings: a character vector of strings which are to be interpreted as NA values.

You can directly call help about arguments definition from the console (press Return to run the
following command):

http://127.0.0.1:37220/help/library/utils/help/NA

Alternatively, you can type "read.table" into the proper help box and press return:

Writing commands on R script file

you have a clear list of what is needed for your analysis;
It is also recommended to describe every step of your code into the R script file
using the comment character #

How to execute commands from the R editor:

 you can execute the whole commands on the script file in two ways

1. by using the function source():

source("mod2-data-import-ts.R")

 2. by GUI interface:

Data Import - Question 1

Type str(dataRR) in the console.

What kind of object dataRR is?

vector

matrix

data frame

Data Import/file types

R software can manage to import data from the most used file types.

TXT Files

A data table resides in a text file and the cells inside the table are separated byblank characters.
The function to be called is:

read.table()

CSV Files - Comma separated values format

Each cell inside such data file is separated by a special character, for instance, a comma. The
first row of the data file should contain the column names instead of the actual data. The function
to be called is:

read.csv()

Fixed-width files

To read a fixed-width format text file into a data frame, you can use the read.fwf() function:

datax<-read.fwf(file, widths, header = , sep = , skip = , row.names, col.
names, n = ,buffersize = , ...)

Data Import/Excel files

Clipboard

The easiest way to import data from Excel is as follows:

1. open Excel sheet, select the entire data table (or part of it) and copy on clipboard (CTRL+C);

2. open R console and type

datax<-read.table(file= "clipboard", sep = "\t", dec = ",")

Notice that you need to specify some arguments of the read.table() function accordingly with the
characteristics of the file to be imported:

sep is the field separator character;
dec the character used in the file for decimal points;
header a logical value indicating whether the file contains the names of the variables as its
first line;
....

Read data directly from file

Obviously, the "clipboard" method is inefficient when you need to import multiple files. However,
there are several ways to read Excel files:

read.xls() in {gdata} package (read/write Excel 97-2004 and 2007+ file format);

read.xlsx() in {xlsx} package (read/write Excel 97/2000/XP/2003/2007 file format);

.......

Connection to file

The {RODBC} package provides tools to connect with Microsoft Access database and Excel, as
well. Notice that ODBC drivers are required to use this option.

This topic will be part of the face to face course, so I recommend to install the two
packages {gdata} and {xlsx}.

Exploration Data Analysis/1

Copy and paste the following commands into the file "mod2-data-import-ts.R", then execute them from there.

We have already applied the unit measure transformation exclusively of the “RR column” of
data frame:

dataRR$RR<-dataRR$RR*0.1

--

Let us create some new columns concernings the “date” format:

dataRR$YEAR<-as.numeric(substring(dataRR$DATE, 1,4))

where we have chosen "YEAR" as a name for this new column and filled it with the first four
characters of column "DATE" (notice that we have done a transformation from character to
numeric)

dataRR$MONTH<-as.numeric(substring(dataRR$DATE, 5,6))
dataRR$DAY<-as.numeric(substring(dataRR$DATE, 7,8))
dataRR$MONTHABB<-month.abb[dataRR$MONTH]
dataRR$YEARMONTH<-paste(dataRR$YEAR, dataRR$MONTHABB, sep="")
dataRR$DATE<-as.Date(as.character(dataRR$DATE), "%Y%m%d")

In the previous commands we have used some functions that you haven't encountered yet:

as.numeric()

substring()

paste()

as.Date()

and pre-existing object

month.abb[].

Type these functions in the help box and learn their usage.

Exploration Data Analysis/2

We now introduce a function to calculate the monthly cumulated precipitation:

tapply()

help(tapply)to learning its use

and put the output of the function into a new object that we name mon.cum:

mon.cum<-tapply(X=dataRR$RR, INDEX=list(dataRR$YEAR, dataRR$MONTH), FUN
=sum, na.rm=TRUE)

Notice that we need to specify some arguments of the tapply() function:

INDEX: the columns to which group the main variable dataRR$RR on;
FUN: the function to be applied to each group.

Exploratory Data Analysis - Exercise 1

Exploratory Data Analysis - Exercise 1

You have just calculated monthly cumulated precipitation using the line:

mon.cum<-tapply(X=dataRR$RR, INDEX=list(dataRR$YEAR, dataRR$MONTH), FUN=s
um, na.rm=TRUE)

Now, change the na.rm argument to "FALSE" and count the NA (missing
data) in the dataset. When you set the na.rm=FALSE in the configuration of
tapply() given above, i.e. a monthly aggregation of daily values, the output
will result to NA if one or more daily values are missing.

The counting of monthly aggregated missing data is:

10

none

63

Exploration Data Analysis/3

Visualize the mon.cum object using the function:

View(mon.cum)

The mon.cum object has missing data since we set na.rm=FALSE to solve the exercise. Then, re-
execute the previous command setting na.rm=TRUE before proceeding.

Exporation Data Analysis/4

How to compute CLIMATOLOGY of monthly cumulated precipitation in a specified period?

For instance, we can average over the entire period using the apply() or the colMeans() function
(notice that mon.cum object is actually a matrix, str(mon.cum) to prove it). We can propose the
following two options:

1)
mon.cum.ave
1<-apply(X=mon.cum, MARGIN=2, FUN=mean, na.rm=TRUE) # first option

2)
mon.cum.ave2<-colMeans(x=mo
n.cum, na.rm=TRUE) # second option

It can also be useful to round decimal digits:

mon.cum.ave<-round(mon.cum.ave1, digits=1)

Exploratory Data Analysis - Exercise 2

Exploratory Data Analysis - Exercise 2

More interestingly, we can average over the period 1971-2000 sub-setting the largest matrix of
monthly data.

Firstly, notice that mon.cum object has 2 dimnames attributes and the first one is for row.

str(mon.cum)
 num [1:65, 1:12] 87.1 56.4 58.1 60.1 26.7 37.9 87.7 87.5 42.2 77.4 ...
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:65] "1951" "1952" "1953" "1954" ...
 ..$: chr [1:12] "1" "2" "3" "4" ...

Then, we can build an index based on years to select the period 1971-2000 frommon.cum:

Years.Index<-as.character(c(1971:2000))
Years.Index
 [1] "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979" "1980
" "1981" "1982" "1983"
[14] "1984" "1985" "1986" "1987" "1988" "1989" "1990" "1991" "1992" "1993
" "1994" "1995" "1996"
[27] "1997" "1998" "1999" "2000"

and use it to sub-set mon.cum as follows:

mon.cum.7100<-mon.cum[Years.Index,]

Your turn now: compute 1971-2000 climatology and put the result into a new object named,
say mon.cum.ave.7100.

Which is the value of October's cumulated precipitation in mm?

123.9

125.0

165.6

Exploration Data Analysis/5

Seasonal Aggregation

Now, we’ll se how to aggregate data according to DJF, MAM, JJA and SON seasons.

As usual in programming, there are several ways to do the same thing: you’ll find your way, till
then follow this one:

library(seas) # load the seas library
> Error in library(seas): there is no package called ‘seas’

SUGGESTION: always read error messages carefully, you’ll find out how to get the solution…….

install.packages("seas”)

Since the function mkseas() of {seas} package requires a specific name for the column that
contains the date, we need to rename the column dataRR$DATE as follows:

names(dataRR)[2]<-"date"

Then, add a new column named, say "SEAS" to dataRR data frame:

dataRR$SEAS<-mkseas(x=dataRR, width="DJF")

 and another named "SEASYEAR"

dataRR$SEASYEAR<-paste(dataRR$YEAR, dataRR$SEAS, sep="")
str(dataRR)

Exploration Data Analysis - Exercise 3

Exploration Data Analysis- Exercise 3

Compute 1971-2000 seasonal climatology.

Which is the value of Spring's cumulated precipitation (MAM)?

193.0

327.4

65.0

Time Series/1

Now we show you how to use the R software to carry out some simple analyses that are common
in analyzing time series data.

Building a time series

The ts() function will convert a numeric vector into a R time series object.

The format is:

ts(vector, start=, end=, frequency=)

where startandend are the times of the first and last observation and frequency is the number of
observations per unit time

(1=annual, 4=quartly, 12=monthly, 365.25=daily).

Firstly, we need to transform the mon.cum object from matrix to
vector form, where t() is the transposing function:

mon.cum.V<-as.vector(t(mon.cum))

then to build a time series object

mon.cum.ts<-ts(mon.cum.V, start=c(1951,1), frequency=12)

Time Series - Question 2

What kind of objects mon.cum.Vand mon.cum.ts are?

vector and ts object

vector and matrix

vector and data frame

Time Series/2

Plotting and sub-setting a time series

Plotting time series object:

graphts<-plot.ts(mon.cum.ts)

Subsetting time series object (from Jan 1971 to Dec 2000):

mon.cum.ts7100<-window(mon.cum.ts, start=c(1971,1), end=c(2000,12))

Plotting the time series subset:

graphts7100<-plot.ts(mon.cum.ts7100, ylab="mm", main="Monthly Precipitati
on 1971-2000")

Time Series/3

Saving a Plot

(2 options)

1. from the RGUI “File-Save as” panel

 2. from Console by typing (useful if you need to plot multiple graphs):

 png(file="Plots/time-series-RR.png”)
 graph<-plot.ts(mon.cum.ts7100)
 dev.off()

Time Series - Exercise 4

Time Series - Exercise 4

Finding Outliers

Find the dates of the 5 outliers (say RR>500 mm) by visualizing the time series graph.

Oct 1978, Nov 1978, Dec 1978, Jan 1979, Feb 1979

Dec 1978, Jan 1979, Feb 1979, Mar 1979, Apr 1979

Dec 1979, Jan 1980, Feb 1980, Mar 1980, Apr 1980

Time Series/4

Now, we’ll replace the 5 outliers with the correspondent monthly value of 1971-2000
climatology.

Firstly, we need to create an alias of mon.cum.ts7100:

 mon.cum.ts7100.imp <- mon.cum.ts7100

Outlier dates are from Oct 1978 to Feb 1979, we select and substitute values:

window(mon
.cum.ts7100.imp, sta
rt=c(1978,10), end=c(1979,2)) <-
c(mon.cum.ave.7100[10:12], mon.cum.ave.7100[1:2])

 mon.cum.ts7100.imp is now a new time series object without outliers!

SUGGESTION: you have already built the mon.cum.ave.7100 object in a previous exercise.

Time Series/5

Seasonal Decomposition: an example of analysis done working on ts objects.

A time series with additive trend, seasonal, and irregular components can be decomposed. Three
way to do that, among others:

1.by loess smoothing

 decomposition<-stl(mon.cum.ts7100.imp, s.window="period")
 decomposition
 plot(decomposition)

 you may want to control the window for trend extraction, for instance you impose a 3-years
filter (36 months):

 decomposition<-stl(mon.cum.ts7100.imp, s.window="period”, t.window=3
6)
 plot(decomposition)

2. by Structural time series models are (linear Gaussian) state-space models for (univariate)
time series based on a decomposition of the series into a number of components:

 decomposition2<-StructTS(mon.cum.ts7100.imp,type="BSM")
 str(decomposition2)
 plot(decomposition2$fitted)

 #check the function output for fitted values

3. by Arima models (three integer components (p, d, q) order, the degree of differencing,
and the MA order):

 decomposition3<-arima(mon.cum.ts7100.imp,order=c(2,0,3))

 predict(decomposition3,n.ahead=12) #predicting the 12 months ahead

Summary

At this point you should be able to:

manipulate all types of R objects

apply generic R functions

aggregate data at different time scales
perform basic analysis of climate time series

In the next module, you will learn how to import NetCDF files, which is one of the most common
format for climate data.

You will also be introduced to the basic operation of raster package such as cutting,
summarizing and interpolating gridded datasets.

You may want to download the R script containing all the commands used in this module:

 R script: mod2-data-import-ts.R

http://ibimet-rtc.mlib.cnr.it/pluginfile.php?file=/2950/mod_lesson/page_contents/2218/mod2-data-import-ts.R

FINAL EXERCISE

FINAL EXERCISE

At the end of this module, you are asked to do an exercise (close this lesson
and see the correspondent assignment).

“Plot the time series of yearly precipitation anomaly with respect to
1981-2010 climatology”

Solution Exercise 1

Solution:

mon.cumF<-tapply(X=dataRR$RR, INDEX=list(dataRR$YEAR, dataRR$MONTH), FUN=
sum, na.rm=FALSE)

length(mon.cumF[is.na(mon.cumF)==TRUE])

The dataset contains 63 NA

Solution Exercise 2

Solution:

mon.cum.ave.7100<-round(colMeans(x=mon.cum.7100, na.rm=T), digits=1)
mon.cum.ave.7100[10]

October cumulated precipitation amounts to 123.9mm

Solution Exercise 3

Solution:

Seasonal cumulated precipitation:

seas.cum<-tapply(X=dataRR$RR, INDEX=list(dataRR$YEAR, dataRR$SEAS), FUN=s
um, na.rm=TRUE)

Sub setting the matrix seas.cum:

seas.cum.7100<-seas.cum[as.character(c(1971:2000)),]

Seasonal cumulated precipitation averaged over 1971-2000:

 seas.cum.ave.7100<-round(colMeans(x=seas.cum.7100, na.rm=T), digits=1)

Spring (MAM) cumulated precipitation amounts to 193.0 mm

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

